Definition. M prime: $M=P \# Q \Rightarrow\left(P=S^{3}\right) \vee\left(Q=S^{3}\right)$. hence prime-decompositions exist. • Uniqueness.
M Irreducible: an embedded 2-sphere in M bounds a 3-ball. Nonorientable M ? Same but $M \#\left(S^{2} \times S^{1}\right)=M \#\left(S^{2} \widetilde{\times} S^{1}\right)$. (Irreducible \Rightarrow Prime).
Theorem (Alexander, 1920s). S^{3} is irreducible.
Proof. Study the change to the "canonical closure" of a cropped embedded S^{2} under the following cases:

Theorem. Orientable, prime, not irreducible $\Rightarrow S^{2} \times S^{1}$. Nonorientable? Also $S^{2} \widetilde{\times} S^{1}$ (Klein 3D).
Theorem. Compact connected orientable 3-manifolds have unique decomposition into primes.
Proof. • Given a system of splitting spheres (sss) and a θ partition of one member, at least one part will make an sss. - An sss can be simplified relative to a fixed triangulation τ : only disk intersections with simplices; circle and single-edge-arc intersections with faces of τ can be eliminated. The size of an sss is bounded by $4|\tau|+\operatorname{rank} H_{1}(M ; \mathbb{Z} / 2)$ and

Dehn's Lemma (Dehn 1910 (wrong), Papakyriakopoulos 1950s). M a 3 -manifold, $f: B^{2} \rightarrow M$ s.t. for some neighbor$\operatorname{hood} A$ of ∂B^{2} in B^{2} the restriction $\left.F\right|_{A}$ is an embedding and $f^{-1}(f(A))=A$. Then $\left.f\right|_{\partial B^{2}}$ extends to an embedding $g: B^{2} \rightarrow M$.
The Loop Theorem (Stallings 1960, implies Dehn's
lemma). M a 3-manifold, F a connected 2-manifold in ∂M, $\operatorname{ker}\left(\pi_{1}(F) \rightarrow \pi_{1}(M) \not \subset N \triangleleft \pi_{1}(F)\right.$. Then there is a proper embedding $g:\left(B^{2}, \partial B^{2}\right) \rightarrow(M, F)$ s.t. $\left[\left.g\right|_{\partial B^{2}}\right] \notin N$.
The Sphere Theorem. M orientable 3-manifold, N a $\pi_{1}(M)$-invariant proper subgroup of $\pi_{2}(M)$. Then there is an embedding $g: S^{2} \rightarrow M$ s.t. $[g] \notin N$.

