Finite Type Invariants of Ribbon Knotted Balloons and Hoops Abstract. On my September 17 Geneva talk ($\overline{\omega / \text { sep })}$ I de-Action 1. scribed a certain trees-and-wheels-valued invariant ζ of ribbon knotted loops and 2 -spheres in 4 -space, and my October 8 Geneva talk ($\omega /$ oct) $)$ describes its reduction to the Alexander $\tilde{\mathcal{A}}^{b h}=\mathbb{Q}$ polynomial. Today I will explain how that same invariant arises completely naturally within the theory of finite type invariants of ribbon knotted loops and 2 -spheres in 4 -space.

$$
\begin{aligned}
& \text { Action } 1 . \\
& \tilde{\mathcal{A}}^{b h}=\mathbb{Q}
\end{aligned}
$$

$$
\pi: \left.\stackrel{|c|}{\left.\begin{array}{ll}
c & d \\
a & b
\end{array} \right\rvert\,} \right\rvert\, \longmapsto \underbrace{c}_{a}
$$

(then connect using xings or v -xings)

My goal is to tell you why such an invariant is expected, yet not to derive the computable formulas.

Dictionary.

"v-xing"

blue is never "over"
Expansions the semi-virtual

i.e. $/-><{ }_{\text {or }}$

Let $\mathcal{I}^{n}:=\langle$ pictures with $\geq n$ semi-virts $\rangle \subset \mathcal{K}^{b h}$.
We seek an "expansion"

$$
Z: \mathcal{K}^{b h} \rightarrow \operatorname{gr} \mathcal{K}^{b h}=\widehat{\bigoplus} \mathcal{I}^{n} / \mathcal{I}^{n+1}=: \mathcal{A}^{b h}
$$

satisfying "property U": if $\gamma \in \mathcal{I}^{n}$, then

$$
Z(\gamma)=\left(0, \ldots, 0, \gamma / \mathcal{I}^{n+1}, *, *, \ldots\right)
$$

Why? - Just because, and this is vastly more general. - $\left(\mathcal{K}^{b h} / \mathcal{I}^{n+1}\right)^{\star}$ is "finite-type/polynomial invariants".
 $2 \&+\&+Q^{2}+\&=\&+\&+Q^{Q}+Q^{G \text { Goussarov-Polyak-Viro }}$

$$
\forall+\rightarrow \rightarrow+|\rightarrow| \rightarrow|\rightarrow+\rightarrow+\rightarrow+|
$$

using TC
Action 2.

R3. $|\rightarrow| \rightarrow|\rightarrow| \rightarrow \mid$ Exercise.
$\xrightarrow{\rightarrow \rightarrow}=\xrightarrow[+]{\longrightarrow} \rightarrow++\rightarrow$ Prove property U.
The Bracket-Rise Theorem.

$$
\overrightarrow{S T U}_{3}=\mathrm{TC}: 0=1 \mid-X \overrightarrow{I H X}:+
$$

Proō $\overline{\text { an }}$

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels persist.
Theorem. $\mathcal{A}^{b h}$ is a bi-algebra. The space of its primitives is $F L(T)^{H} \times C W(T)$, and $\zeta=\log Z$.

- The Taylor example: Take $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right), \mathcal{I}=\zeta$ is computable! ζ of the Borromean tangle, to degree 5: $\{f \in \mathcal{K}: f(0)=0\}$. Then $\mathcal{I}^{n}=\left\{f: f\right.$ vanishes like $\left.|x|^{n}\right\}$ so $\mathcal{I}^{n} / \mathcal{I}^{n+1}$ is homogeneous polynomials of degree n and Z is a "Taylor expansion"! (So Taylor expansions are vastly more general than you'd think).
Plan. We'll construct a graded $\tilde{\mathcal{A}}^{\text {bh }}$, a surjective graded $\pi: \tilde{\mathcal{A}}^{b h} \rightarrow \mathcal{A}^{b h}$, and a filtered $\tilde{Z}: \mathcal{K}^{b h} \rightarrow \mathcal{A}^{b h}$ so that $\pi / / \operatorname{gr} \tilde{Z}=I d$ (property U: if $\operatorname{deg} D=n, \tilde{Z}(\pi(D))=$ $\pi(D)+(\operatorname{deg} \geq n))$. Hence $\bullet \pi$ is an iso-
 morphism. • $\bar{Z}:=\tilde{Z} \| \pi$ is an expansion.

