Finite Type Invariants of Ribbon Knotted Balloons and Hoops

Abstract. On my September 17 Geneva talk (ω/sep) I described a certain trees-and-wheels-valued invariant ζ of ribbon knotted loops and 2-spheres in 4-space, and my October 8 Geneva talk (ω/oct) describes its reduction to the Alexander $\tilde{\mathcal{A}}^{bh} = \mathbb{Q}$ polynomial. Today I will explain how that same invariant arises completely naturally within the theory of finite type invariants of ribbon knotted loops and 2-spheres in 4-space.

My goal is to tell you why such an invariant is expected, yet not to derive the computable formulas.

Let $\mathcal{I}^n := \langle \text{pictures with } \geq n \text{ semi-virts} \rangle \subset \mathcal{K}^{bh}$. We seek an "expansion"

$$Z \colon \mathcal{K}^{bh} \to \operatorname{gr} \mathcal{K}^{bh} = \bigoplus \mathcal{I}^n/\mathcal{I}^{n+1} =: \mathcal{A}^{bh}$$

satisfying "property U": if $\gamma \in \mathcal{I}^n$, then

the semi-virtual

$$Z(\gamma) = (0, \dots, 0, \gamma/\mathcal{I}^{n+1}, *, *, \dots).$$

Why? • Just because, and this is vastly more general. • $(\mathcal{K}^{bh}/\mathcal{I}^{n+1})^*$ is "finite-type/polynomial invariants".

• The Taylor example: Take $\mathcal{K} = C^{\infty}(\mathbb{R}^n)$, $\mathcal{I} = \zeta$ $\{f \in \mathcal{K}: f(0) = 0\}$. Then $\mathcal{I}^n = \{f: f \text{ vanishes like } |x|^n\}$ so $\mathcal{I}^n/\mathcal{I}^{n+1}$ is homogeneous polynomials of degree n and Z is a "Taylor expansion"! (So Taylor expansions are vastly more general than you'd think).

Plan. We'll construct a graded $\tilde{\mathcal{A}}^{bh}$, a surjective graded $\pi \colon \tilde{\mathcal{A}}^{bh} \to \mathcal{A}^{bh}$, and a filtered $\tilde{Z} \colon \mathcal{K}^{bh} \to \mathcal{A}^{bh}$ so that $\pi \not \mid \operatorname{gr} \tilde{Z} = \operatorname{Id}$ (property U: if $\deg D = n$, $\tilde{Z}(\pi(D)) = \pi(D) + (\deg \geq n)$). Hence \bullet π is an isomorphism $\bullet Z := \tilde{Z} \not \mid \pi$ is an expansion

X.-S. Lin

morphism. • $Z := Z /\!\!/ \pi$ is an expansion. "God created the knots, all else in topology is the work of mortals."

Deriving $\overline{4T}$. key: use Start from

 $\operatorname{in} \mathcal{I}^n/\mathcal{I}$ $\operatorname{using TC}$

Action 2.

$$\tilde{Z}: \xrightarrow{a \quad c} \xrightarrow{c} \xrightarrow{e^a \quad d} = \left| \begin{array}{c} + \frac{1}{2} \\ - \frac{1}{2} \\$$

The Bracket-Rise Theorem

 $\overrightarrow{STU}_3 = \text{TC: } 0 = \underbrace{ - \underbrace{ \overrightarrow{IHX}:}}_{} = \underbrace{ - \underbrace{ }}_{}$

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels persist.

Theorem. \mathcal{A}^{bh} is a bi-algebra. The space of its primitives is $FL(T)^H \times CW(T)$, and $\zeta = \log Z$.

 $=\zeta$ is computable! ζ of the Borromean tangle, to degree 5:

