	The next-simplest example $(X_1 X_2) = (Y_1 Y_2)$	
	September-30-13 4:36 AM	
	Pavol writes: For the next simplest example look in my	
	paper with David, sect.3. You can read it, but you can just	
	look at the parenthesized braid with 4 strands which is	
	drawn there. Let J in U(g+g+g+g)[[hbar]] be what $(X_1 \ Y_1)$ $(X_2 \ Y_2)$	
	corresponds to this braid.	2
	Now if A is an algebra in $U(g+g)$ -Mod^Phi)(notice: there is $\int \int F G G S W G G$	9)
	no bar over any g) then:	//
4	Parhaps I should	ļ
	1. A is a Ug-module, where this g is the diagonal in g+g, but the original product m on A is no longer associative in Make a 'fropat	tics
		1
	Ug-Mod^Phi OF S" Mini-pus	
1	2. however, if we compose m with the action of J: A otimes A -> A otimes A, then this new product m' is A , This is really $U(q) \otimes U(q)$	-11 000
+		100
L	associative in Ug-Mod^Phi	
	3. we can have there a spectator Lie algebra h, i.e. A is in $Mi \in \mathcal{I}$ Must	
	U(g+g+h)-Mod^Phi, and we make it to an associative	
	U(g+g+g+g))and the problem is the	1
	There are now two possibilities for the "next simplest" I Solt which find w	hat
	There are now two possibilities for the "next simplest" I don't understand w algebra:	
	1. start with A=C^infty((G x \bar G)/G x (G x \bar G)/G)=C^	
	\infty(GxG), which is commutative associative in U(g+g+	
	\bar g +\bar g), treat \bar g + \bar g as the spectator h; the	
	composition of the original product with the action of J	
	makes A to an associative (but not commutative) algebra in U(g+\bar g+\bar g). This is the quantization of the	
	moduli space of a triangle (with one vertex marked with +	
	and two with -)	
	Diferenteter lie electros den't cound co cimple, choose	
	 if spectator Lie algebras don't sound so simple, choose any coisotropic C1,C2\subset G, and start with C^infty 	
	(G/C1 x G/C2) as a commutative associative algebra in	
	U(g+g)-Mod^Phi.	