

Flatlanders View an Elephant.

"The third dimension isn't t "

Knots.

(

A Simplified Notation / Double Inflation

The Double Inflation Procedure δ.

Banks like knots. which knot apperers twice?
Many of the images are by Carter and Carter-Saito, ω / CS.

Satoh's Conjecture. ($\omega /$ Sat) The "kernel" of the "double inflation" map δ, mapping "long" w-knot diagrams in the plane to "long" knotted 2 D tubes in 4 D , is precisely the moves R1-R3, VR1-VR3, D and OC listed below.
In other words, two long w-knot diagrams represent via δ the same long 2D knotted tube in 4D iff they differ by a sequence of the said moves.

First Iso. Thm: $\phi: G \rightarrow H \Rightarrow \operatorname{im} \phi \cong G / \operatorname{ker}(\phi)$ δ is a map from algebra to topology. So a thing in "hard" topology ("ribbon 2-knots") is the same as a thing in "easy" algebra.

What's "The Same"?
Reidemeister' Theorem. Two knot diagrams represent the same 3D knot iff they differ by a sequence of "Reidemester moves":

w-Moves. Same R1, R2, R3 as above,

