Frohman on Hyperbolic Geometry
May-31-13
12:23 PM

Charles Frohman I love giving that lecture. I derive that if I take the sector of the hyperbola $x^{\wedge} 2-y^{\wedge} 2=1$ with vertices $(0,0),(1,0)$ and (c, s) where $c>0$ and edges consisting of line segments from $(0,0)$ to $(1,0)$ and $(0,0)$ to (c, s) along with the arc of the hyperbola from $(1,0)$ to (c, s) having signed area $t / 2$ then ($c, s)=($ cosht,sinht). I found it in Klein's Elementary Mathematics from a Higher Viewpoint.

Pasted from https://www.facebook.com/

