Rotation Numbers. $R(\alpha):=\frac{1}{2 k}\left[t_{\alpha}-h_{\alpha}\right]_{2 k}-\frac{1}{2}$, whereTheorem 1. If T is non-split alternating, $K h(T)$ is coher$[j]_{2 k}:=\left\{\begin{array}{ll}j & \text { if } j>0 \\ j+2 k & \text { if } j<0\end{array}\right.$, and $R(\circlearrowleft)=+1$ and $R(\circlearrowright)=-1$. Theorem 2. If $\left\{\Omega_{i}\right\}$ are coherently diagonal and D is alter Also, $R(\alpha\{q\}):=R(\alpha)+q$. Examples:

$$
\begin{gathered}
R(\alpha)=\frac{1}{6}-\frac{1}{2}=-\frac{1}{3} \\
R(\beta)=\frac{1}{2}-\frac{1}{2}=0 \\
R(\gamma)=\frac{5}{6}-\frac{1}{2}=\frac{1}{3}
\end{gathered}
$$

Alternating Planar Algebra. All input/output boundaries are connected via the arcs, "in" and "out" strands alternate on all boundaries. A "rotation number" R_{D} can be defined.
Proposition 3.2. $R\left(D\left(\sigma_{1}, \ldots, \sigma_{d}\right)\right)=R_{D}+\sum_{i=1}^{d} R\left(\sigma_{i}\right)$.

The Basic Operations.

Diagonal Complexes. $\Omega: \cdots \rightarrow\left[\sigma_{j}^{r}\right]_{j} \rightarrow\left[\sigma_{j}^{r+1}\right]_{j} \rightarrow \cdots$ such that $2 r-R\left(\sigma_{j}^{r}\right)$ is a constant $C(\Omega)$.
Coherently Diagonal Complexes. All partial closures Gravity and Smoothings. can be reduced to diagonal, with $C(U(\Omega))=C(\Omega)-C\left(D_{U}\right)$.
"Main" Lemma 6.2. The pairing $D\left(\Omega_{1}, \Omega_{2}\right)$ via an arc diagram that has at least one boundary arc coming from its first input of a coherently diagonal complex Ω_{1} and a diagonal complex Ω_{2} is coherently diagonal.

Delooping and Gaussian Elimination.

$\cdots[C] \xrightarrow{\binom{\alpha}{\beta}}$

$$
\left[\begin{array}{l}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\phi & \delta \\
\gamma & \epsilon
\end{array}\right)}
$$

$\cdots[c] \xrightarrow{\binom{0}{8}}$

$$
\left[\begin{array}{l}
b_{1} \\
D
\end{array}\right] \xrightarrow{\left(\begin{array}{cc}
\phi & 0 \\
0 & \epsilon-\gamma \phi^{-1} \delta
\end{array}\right)}\left[\begin{array}{l}
b_{2} \\
E
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
0 & \nu
\end{array}\right)}[F]
$$

