
KHOVANOV HOMOLOGY FOR ALTERNATING TANGLES
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Abstract. We describe a “concentration on the diagonal” condition on the Khovanov com-
plex of tangles, show that this condition is satisfied by the Khovanov complex of the single
crossing tangles (!) and ("), and prove that it is preserved by alternating planar algebra
compositions. Hence, this condition is satisfied by the Khovanov complex of all alternating
tangles. Finally, in the case of 0-tangles, meaning links, our condition is equivalent to a well
known result [Lee1] which states that the Khovanov homology of a non-split alternating link
is supported on two diagonals. Thus our condition is a generalization of Lee’s Theorem to
the case of tangles
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1. Introduction

Khovanov [Kh] constructed an invariant of links which opened new prospects in knot the-
ory and which is now known as Khovanov homology. Bar-Natan in [BN1] computed this
invariant and found that it is a stronger invariant than the Jones polynomial. Khovanov,
Bar-Natan and Garoufalidis [Ga] formulated several conjectures related to the Khovanov
homology. One of these refers to the fact that the Khovanov homology of a non-split alter-
nating link is supported in two lines. To see this, in Table 1, we present the dimension of the
groups in the Khovanov homology for the Borromean link and illustrate that the non-trivial
groups are located in two consecutive diagonals. The fact that every alternating link satisfies
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j\i -3 -2 -1 0 1 2 3

7 1
5 2
3 1
1 4 2
-1 2 4
-3 1
-5 2
-7 1

Table 1. The Khovanov homology for the Borromean link

this property was proved by Lee in [Lee1].
In [BN2] Bar-Natan presented a generalization of Khovanov homology to tangles. In his

approach, a formal chain complex is assigned to every tangle. This formal chain complex,
regarded within a special category, is an (up to homotopy) invariant of the tangle. For the
particular case in which the tangle is a link, this chain complex coincides with the cube of
smoothings presented in [Kh].

This local Khovanov theory was used in [BN3] to make an algorithm which provides a
faster computation of the Khovanov homology of a link. The technique used in this paper
was also important for theoretical reasons. We can apply it to prove the invariance of the
Khovanov homology, see [BN3]. It was also used in [BN-Mor] to give a simple proof of Lee’s
result stated in [Lee2], about the dimension of the Lee variant of the Khovanov homology.
Here, we will show how it can be used to state a generalization to tangles of the aforemen-
tioned Lee’s theorem [Lee1] about the Khovanov homology of alternating links. Most of
the success attained by this algorithm is due to the simplification of the Khovanov complex
associated to a tangle. This simplification consists of the elimination of the loops in the
smoothing of the complex (delooping), and the isomorphisms that appear as entries within
differentials (Gaussian elimination). Indeed, given a chain complex Ω it is possible apply
iteratively delooping and gaussian elimination and obtain a homotopy equivalent complex
with no loops and no isomorphisms. In this paper, we say that the resulting complex is a
reduced form of Ω, and the algorithm that allows to find it will be named the DG algorithm.

* *

*

*

In section 7.1 we observe that the Khovanov complex of an al-
ternating tangle can be endowed with consistent “orientations”1,
namely, every strand in every smoothing appearing in the complex
can be oriented in a natural way, and likewise every cobordism,
in a manner so that these orientations are consistent. (A quick
glance at figures 5 on page 16 and 6 on page 16 should suffice to
convince the experts). An important tool for the composition of
objects of this type is the concept of alternating planar algebra. An
alternating planar algebra is an oriented planar algebra as in [BN2, Section 5], where the
d-input planar arc diagrams D satisfy the following conditions: i) The number k of strings
ending on the external boundary of D is greater than 0. ii) There is complete connection

1Note that these are orientations of the smoothings, and they have nothing to do with the orientations of
the components of the tangle itself.
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*

(a) Smoothing with rotation
number 1

*

(b) Smoothing with rotation
number 2

*

(c) The standard closure of
the smoothing in B

Figure 1. Several smoothings and their rotation numbers. For calculating the rotation

number of the smoothing in (B) we count the loops in its positive closure which appears in

(C)

among input discs of the diagram and its arcs, namely, the union of the diagram arcs and
the boundary of the internal holes is a connected set. iii) The in- and out-strings alternate
in every boundary component of the diagram. A planar arc diagram like this is called a
type-A planar diagram. If Φ is an element in the planar algebra and D is a 1-input type-A
planar diagram then D(Φ) is called a partial closure of Φ.

*

*

Associated with each oriented smoothing σ is an integer called
the rotation number of σ which can be determined in the following
way. If σ has only closed components (loops), then R(σ) is the num-
ber of positively oriented (oriented counterclockwise) loops minus the
number of negatively oriented (oriented clockwise) loops. The ro-
tation number of an oriented smoothing with boundary is the rota-
tion number of its standard closure, which is obtained by embed-
ding the smoothing in a diagram as one of the two on the right.
Figure 1 displays several smoothings with their corresponding ro-
tation number. This orientation in the smoothings and the rota-
tion number associated to it were previously utilized in [Bur] to gen-
eralize a Thistlethwaite’s result for the Jones polynomial stated in
[Th].

In a manner similar to [BN2], we define a certain graded category Cob3
o of oriented cobor-

disms. The objects of Cob3
o are oriented smoothing, and the morphisms are oriented cobor-

disms. This category is used to define the category Kom(Mat(Cob3
o)) (abbreviated Kobo) of

complexes over Mat(Cob3
o).

Specifically, for degree-shifted smoothings σ{q}, we define R(σ{q}) := R(σ) + q. We fur-
ther use this degree-shifted rotation number to define a special class of chain complexes in
Kobo.
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Definition 1.1. Let C be an integer. A complex Ω is called C-diagonal if it is homotopy
equivalent to a reduced complex

Ω′ : · · · −→
[
σrj
]
j
−→

[
σr+1
j

]
j
−→ · · ·

which satisfies that for all degree-shifted smoothings σrj , 2r −R(σrj ) = C.

In other words, in the reduced form of a diagonal complex, twice the homological degrees
and the degree-shifted rotation numbers of the smoothings always lie along a single diagonal.
The constant C is called the rotation constant of Ω. When no confusion arises we only write
diagonal complex to signify that there exists a constant C such as the complex is C-diagonal.
Using the above terminology, our main result is stated as follows:

Theorem 1. If T is an alternating non-split tangle then there exist a constant C such that
the Khovanov homology Kh(T ) is C-diagonal.

Roughly speaking, we say that a complex Ω is coherently diagonal (precise meaning is
stated in definition 4.3) if it is a diagonal complex whose partial closures are also diagonal.
As every partial closure of an alternating tangle is again an alternating tangle, Theorem 1
can be strengthened by saying that the Khovanov homology Kh(T ) of a non-split alternating
tangle is coherently diagonal. To prove the stronger version of the theorem we use the fact
that non-split alternating tangles form an alternating planar algebra generated by the one-
crossing tangles (!) and ("). Thus Theorem 1 follows from the observation that Kh(!)
and Kh(") are coherently diagonal and from Theorem 2 below:

Theorem 2. If Ω1, . . . ,Ωn are coherently diagonal complexes and D is an alternating planar
diagram then D(Ω1, . . . ,Ωn) is coherently diagonal

In the case of alternating tangles with no boundary, i.e., in the case of alternating links,
Theorem 1 reduces to Lee’s theorem on the Khovanov homology of alternating links.

The work is organized as follows. Section 2 reviews the local Khovanov theory of [BN2].
Section 3 is devoted to introducing the category Cob3

o and gives a quick review of some con-
cepts related to alternating planar algebras. In particular we review the concepts of rotation
numbers, alternating planar diagrams, associated rotation numbers, and basic operators.

Section 4 presents examples of diagonal and non-diagonal complexes, Introduces the con-
cept of coherently diagonal complexes, and states some results about the complexes obtained
when a basic operator is applied to diagonal complexes. When applied to the composition
of two tangles, the Khovanov homology is formed from a double complex. However, when
applying the DG algorithm the structure of double complex is lost. Attempting to fix this
problem in Section 5 we introduced the concept of perturbed double complex which is the
object in which the DG algorithm lives. Indeed, we shall see that double complexes are
special cases of perturbed double complexes and that after applying any step of the DG
algorithm in a perturbed double complex, the complex continues being of the same class.
The application of the DG algorithm leads to the proof in section 6 of Theorem 2. Finally
section 7 is dedicated to the study of non-split alternating tangles. Here, we prove Theorem
1 and derive from it the Lee’s Theorem formulated in [Lee1].

2. The local Khovanov theory: Notation and some details

The notation and some results appearing here are treated in more details in [BN2, BN3,
Naot]. Given a set B of 2k marked points on a based circle C, a smoothing with boundary B
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is a union of strings a1, ..., an embedded in the planar disk for which C is the boundary, such
that ∪ni=1∂ai = B. These strings are either closed curves, loops, or strings whose boundaries
are points on B, strands. If B = ∅, the smoothing is a union of circles.

We denote by Cob3(B) the category whose objects are
smoothings with boundary B, and whose morphisms are
cobordisms between such smoothings, regarded up to bound-
ary preserving isotopy. The composition of morphisms is
given by placing one cobordism atop the other.

As in [BN2, Section 11.2], Cob3
•/l(B) denotes the extension of Cob3(B) where “dots” are

allowed, and whose morphisms are considered modulo the local relations:

(1)

= 0, = 1, = 0,

and = + .

We will use the notation Cob3 and Cob3
•/l as a generic reference, namely, Cob3 =

⋃
B Cob

3(B)

and Cob3
•/l =

⋃
B Cob

3
•/l(B). If B has 2k elements, we usually write Cob3

•/l(k) instead of

Cob3
•/l(B). If C is any category, Mat(C) will be the additive category whose objects are

column vectors (formal direct sums) whose entries are objects of C. Given two objects in
this category,

O =


O1

O2
...
On

 O1 =


O1

1

O1
2

...
O1
m

 ,

the morphisms between these objects will be matrices whose entries are formal sums of
morphisms between them. The morphisms in this additive category are added using the
usual matrix addition and the morphism composition is modelled by matrix multiplication,
i.e, given two appropriate morphisms F = (Fik) and G = (Gkj) between objects of this
category, then F ◦G is given by

F ◦G =
∑
k

FikGkj .

Kom(C) will be the category of formal complexes over an additive category C. Kom/h(C) is
Kom(C) modulo homotopy. We also use the abbreviations Kob(k) and Kob/h(k) for denoting

Kom(Mat(Cob3
•/l(k))) and Kom/h(Mat(Cob3

•/l(k))).

Objects and morphisms of the categories Cob3, Cob3
•/l, Mat(Cob3

•/l), Kob(k), and Kob/h(k)
can be seen as examples of planar algebras, i.e., if D is a n-input planar diagram, it defines
an operation among elements of the previously mentioned collections. See [BN2] for specifics
of how D defines operations in each of these collections. In particular, if (Ωi, di) ∈ Kob(ki)
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are complexes, the complex (Ω, d) = D(Ω1, . . . ,Ωn) is defined by

Ωr :=
⊕

r=r1+···+rn

D(Ωr1
1 , . . . ,Ω

rn
n )

d|D(Ω
r1
1 ,...,Ωrn

n ) :=
n∑
i=1

(−1)
∑

j<i rjD(IΩ
r1
1
, . . . , di, . . . , IΩrn

n
),

(2)

D(Ω1, . . . ,Ωn) is used here as an abbreviation of D((Ω1, d1), . . . , (Ωn, dn)).
In [BN2] the following very desirable property is also proven. The Khovanov homology is a

planar algebra morphism between the planar algebras T (s) of oriented tangles and Kob/h(k).
That is to say, for an n-input planar diagram D, and suitable tangles T1, ..., Tn, we have

(3) Kh(D(T1, ..., Tn)) ∼= D(Kh(T1), ..., Kh(Tn)).

This last property is used in [BN3] to show a local algorithm for computing the Khovanov
homology of a link. In that paper, it is explained how it is possible to remove the loops in
the smoothings, and some terms in the Khovanov complex Kh(Ti) associated to the local
tangles T1, ..., Tn, and then combine them together in an n-input planar diagram D obtaining
D(Kh(T1), ..., Kh(Tn)), and the Khovanov homology of the original tangle.

The elimination of loops and terms can be done thanks to the following: Lemma 4.1 and
Lemma 4.2 in [BN3]. We copy these lemmas verbatim:

Lemma 2.1. (Delooping) If an object S in Cob3
•/l contains a closed loop `, then it is isomor-

phic (in Mat(Cob3
•/l)) to the direct sum of two copies S ′{+1} and S ′{−1} of S in which ` is

removed, one taken with a degree shift of +1 and one with a degree shift of −1. Symbolically,
this reads © ≡ ∅{+1} ⊕ ∅{−1}.

The isomorphisms for the proof can be seen in:

(4)

+1

−1

using all the relations in (1).

Lemma 2.2. (Gaussian elimination, made abstract) If φ : b1 → b2 is an isomorphism (in
some additive category C), then the four term complex segment in Mat(C)

(5) · · · [C]

α
β


//

[
b1

D

] φ δ
γ ε


//

[
b2

E

] (
µ ν

)
// [F ] · · ·

is isomorphic to the (direct sum) complex segment

(6) · · · [C]

0
β


//

[
b1

D

] φ 0
0 ε− γφ−1δ


//

[
b2

E

] (
0 ν

)
// [F ] · · · .



KHOVANOV HOMOLOGY FOR ALTERNATING TANGLES 7

Both these complexes are homotopy equivalent to the (simpler) complex segment

(7) · · · [C]
(β)

// [D]
(ε−γφ−1δ)

// [E]
(ν)

// [F ] · · · .

Here C, D, E and F are arbitrary columns of objects in C and all Greek letters (other
than φ) represent arbitrary matrices of morphisms in C (having the appropriate dimensions,
domains and ranges); all matrices appearing in these complexes are block-matrices with blocks
as specified. b1 and b2 are billed here as individual objects of C, but they can equally well be
taken to be columns of objects provided (the morphism matrix) φ remains invertible.

From the previous lemmas we infer that the Khovanov complex of a tangle is homotopy
equivalent to a chain complex without loops in the smoothings, and in which every differen-
tial is a non-invertible cobordism. In other words, if (Ω, d) is a complex in Cob3

•/l, we can use
lemmas 2.1, 2.2, and obtain a homotopy equivalent chain complex (Ω′, d′) with no loop in
its smoothings and no invertible cobordism in its differentials. We say that a complex that
has these two properties is reduced. Moreover, we call (Ω′, d′) a reduced form of (Ω, d) .

3. The category Kobo and alternating planar algebras

In this section we introduce an alternating orientation in the objects of Cob3
•/l(k). This ori-

entation induces an orientation in the cobordisms of this category. These oriented k-strand
smoothings and cobordisms form the objects and morphisms in a new category. The com-
position between cobordisms in this oriented category is defined in the standard way, and it
is regarded as a graded category, in the sense of [BN2, Section 6]. We mod out the cobor-
disms in this oriented category by the relations in (1) and denote it as Cob3

o(k). Now we can
follow [BN2] and define sequentially the categories Mat(Cob3

o(k)), Kom(Mat(Cob3
o(k))) and

Kom/h(Mat(Cob3
o(k))). These last two categories are what we denote Kobo(k), and Kobo/h.

As usual, we use Kobo, and Kobo/h, to denote
⋃
k Kobo(k) and

⋃
k Kobo/h(k) respectively.

The orientation of the smoothings is done in such a way that the orientation of the strands
is alternating in the boundary of the disc where they are embedded. After removing loops,
the resulting collection of alternating oriented smoothings obtained will be denoted by the
symbol So. A d-input planar diagram with an alternating orientation of its arcs provides
a good tool for the horizontal composition of objects in So. Given smoothings σ1, ..., σd, a
suitable alternating d-input planar diagram D to compose them has the property that the
i-th input disc has as many boundary arc points as σi. Moreover placing σi in the i-th input
disc, the orientation of σi and D match. An alternatively oriented d-input planar diagram
as this provides a good tool for the horizontal composition of objects not only in So, but also
in Cob3

o, Mat(Cob3
o(k)), Kobo, and Kobo/h.

We are going to use these alternating diagrams to compose non-split alternating tangles,
and we want to preserve the non-split property of the tangle. Hence, it will be better if we use
d-input type A diagrams. A d-input type-A diagram has an even number of strings ending in
each of its boundary components, and by condition (ii) there is complete connection among
input discs of the diagram and its arcs, so every string that begins in the external boundary
ends in a boundary of an internal disk. We can classify the strings as: curls, if they have
their ends in the same input disc; interconnecting arcs, if their ends are in different input
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discs, and boundary arcs, if they have one end in an input disc and the other in the external
boundary of the output disc. The arcs and the boundaries of the discs divide the surface of
the diagram into disjoint regions. Diagrams with only one or two input discs deserves special
attention. Operators defined from diagrams like these are very important for our purposes
since some of them are considered as the generators of the entire collection of operators in a
connected alternating planar algebra.

(a) (b)

Figure 2. Examples of basic planar diagrams

Definition 3.1. A basic planar diagram (See Figure 2) is a 1-input alternating planar dia-
gram with a curl in it, or a 2-input alternating planar diagram with only one interconnecting
arc. A basic operator is one defined from a basic planar diagram. A negative unary basic
operator is one defined from a basic 1-input diagram where the curl completes a negative
loop. A positive unary basic operator is one defined from a basic 1-input diagram where the
curl completes a positive loop. A binary operator is one defined from a basic 2-input planar
diagram.

Proposition 3.2. Any operator D in an alternating oriented planar algebra is the finite
composition of basic operators.

It will be useful to analyze how the rotation number of a smoothing changes when it is
embedded in these basic operators. if U is a positive unary basic operator, and σ ∈ So can
be embedded in U , then the standard closure of σ is the same as the standard closure of
U(σ). So, R(U(σ)) = R(σ). If instead U is a negative unary basic operator, then either the
closure of U(σ) has one positive loop less than the closure of σ, or the closure of U(σ) has
one negative loop more than the closure of σ. Thus in all cases R(U(σ)) = R(σ) − 1; and
finally if B is a binary basic operator, and σ1, σ2 ∈ So can be embedded in its respective
input discs, then is easy to see that R(B(σ1, σ2)) = R(σ1) +R(σ2)− 1. All of this leads to

Proposition 3.3. For each d-input planar diagram D there exists an integer RD (its asso-
ciated rotation number), such as for each d-tuple of oriented smoothings σ1, ..., σd in which
D(σ1, ..., σd) makes sense, the rotation number of D(σ1, ..., σd) is given by:

(8) R(D(σ1, ..., σd)) = RD +
d∑
i=1

R(σi)

4. Diagonal complexes

We begin this section with an example of diagonal complex and then we analyze what
occurs when diagonal complexes are embedded in basic planar diagrams
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Example 4.1. As in [BN3], a dotted line represent a dotted curtain, and K represents the
saddle H −→ 1. The basepoints are not marked as they make no difference.

(1)

Ω1 = {−2} {−1}-

[ ]
.

This is the Khovanov homology of the negative crossing ", now with orientation in
the smoothings. Remember that the first term has homological degree -1. In this
example the rotation number in the first term is 1 and in the second term it is 2.
Taking into account the shift in each of these smoothings, the rotation numbers are
respectively -1 and 1. Observe that in each case, the difference between 2 times the
homological degree r and the shifted rotation number is −1.

(2) The complex

Ω2 = {−2} {−1}-
[0]

.

is not diagonal. Observe that in this case 2r −R(σi{qi}) is not a constant.

4.1. Applying unary operators. The reduced complexes in Kobo can be inserted in ap-
propriate unary planar diagrams. Applying the DG algorithm we obtain again a reduced
complex in Kobo. The whole process can be summarized in the following steps:

(1) placing of the complex in the input disc of the unary planar arc diagram by using
equations (2) with n = 1,

(2) removing the loops obtained by applying lemma 2.1, i.e, replacing each of them by a
copy of ∅{+1} ⊕ ∅{−1}, and

(3) applying gaussian elimination (lemma 2.2), and removing in this way each invertible
differential in the complex.

Definition 4.2. Let (Ω, d) be a chain complex in Kobo(k), then a partial closure of (Ω, d)
is a chain complex of the form Dl ◦ · · · ◦D1(Ω) where 0 ≤ l < k and every Di (1 ≤ i ≤ l) is
a unary basic operator.

We have diagonal complexes whose partial closures are again diagonal complexes.

Definition 4.3. Let (Ω, d) be a C-diagonal complex in Kobo . We say that (Ω, d) is coherently
C-diagonal, if for any appropriate unary operator U with associated rotation number RU ,
the closure U(Ω, d) is a (C −RU)-diagonal complex.

We denote asD(k) the collection of all coherently diagonal complexes in Kom(Mat(Cob3
o(k))),

and as usual, we write D to denote
⋃
kD(k). It is easy to prove that any coherently diagonal

complex satisfies that:

(1) after delooping any of the positive loops obtained in any of its partial closures, by
using lemma 2.2, the terms with negative shifted-degree can be eliminated.

(2) after delooping any of the negative loops obtained in any of its partial closures, by
using lemma 2.2, the terms with positive shifted-degree can be eliminated.

Example 4.4. Since the computation of any other of its partial closures produces other
diagonal complex, the Khovanov homology of the negative crossing is an element of D(2).
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Indeed, by embedding Ω1 of the example 4.1 in a unary basic planar dia-
gram U1 such as the one on the right which has an associated rotation number
RU1 = 0, produces the chain complex.

U1(Ω1) =

[
{−2}

] [
{−1}

]
-

[ ]

∼
[

{−2}
] 

{−2}

{0}

-




The last complex is the result of applying lemma 2.1. Now applying lemma 2.2, we obtain
a homotopy equivalent complex

U1(Ω1) ∼ 0

[
{0}
]

-
[0]

which is also a diagonal complex with the same rotation constant -1. Obviously a complete
proof that this complex is coherently diagonal involves checking that the same happens when
embedding the complex in each of its partial closures.

Example 4.5. The complex

Ω3 = {−2} {−1}-
[0]

.

is diagonal but it is not coherently diagonal. Indeed, if we embed it in U1 the result is

U1(Ω3) =

[
{−2}

] 
{−2}

{0}

-
[0]

which is not diagonal.

4.2. Applying binary operators.

Proposition 4.6. Let Ω1 and Ω2 be coherently diagonal complexes, and let D be a bi-
nary basic planar operator for which D(Ω1,Ω2) is well defined. For each partial closure
C(D(Ω1,Ω2)), there exists an operator D′ defined using a diagram without curls and reduced
chain complexes Ω′1,Ω

′
2 in D such that

C(D(Ω1,Ω2)) = D′(Ω′1,Ω
′
2)

.
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Proof. We have a binary basic planar diagram D such as the one at the
right. A closure of D(Ω1,Ω2) can be regarded as the composition of Ω1 and
Ω2 in an operator C(D) defined from this closure. We can also regard the
disc C(D) as a composition of two closure discs E,E ′ embedded in a binary
planar diagram D′ with no curl such that C(D) = D(E,E ′). See Figure 3.
Hence, C(D(Ω1,Ω2)) = D(E(Ω1), E ′(Ω2)). Since E(Ω1) and E ′(Ω2) are respectively closures
of Ω1 and Ω2 which are elements of D, the proposition has been proved. �

=

Figure 3. The closure of a binary operator can be considered as the binary composition of

two unary operator closures

5. Perturbed double Complexes

The section that follows can be reformulated using the language of homological perturba-
tion theory (e.g. [Cr], with his (b, δ) replaced by our soon-to-be-introduced (d0,

∑
i≥1 d

i)).
Yet given the relative inaccessibility of the required ”homological perturbation lemma,” we
have chosen formulate only what we need, and using the language of the rest of this paper

Given an additive category C, an (upward) perturbed double complex in C is a family Ω of
objects {Ωp,q} of C indexed in Z× Z, together with morphisms

di : Ωp,q → Ωp−i+1,q+i for each i ≥ 0,

such that if d =
∑
di then d2 = 0; or alternatively,

(9)
k∑
i=0

di ◦ dk−i = 0 for each k ≥ 0

It will be convenient to illustrate the perturbed double complex as a lattice as in figure
4 in which any node Ωp,q is the domain of arrows d0, d1, . . ., which satisfies the following
infinite number of conditions

For k = 0: Equation (9) reduces to d0 ◦ d0 = 0. This condition is equivalent to saying
that for each fixed q ∈ Z, the objects Ωp,q and the morphisms d0 : Ωp,q → Ωp+1,q

form a complex. We call these complexes the vertical complexes Ω•,q of the reticular
complex
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...
· · · Ωp−2,q

...
Ωp−2,q+1

...
Ωp−2,q+2

...
Ωp−2,q+3 · · ·

· · ·Ωp−1,q Ωp−1,q+1 Ωp−1,q+2 Ωp−1,q+3 · · ·

· · ·Ωp,q

d0

��

d1
//

d2

33

d3

44

Ωp,q+1 Ωp,q+2 Ωp,q+3 · · ·

· · · Ωp+1,q
...

Ωp+1,q+1
...

Ωp+1,q+2
...

Ωp+1,q+3 · · ·
...

Figure 4. A perturbed double complex

For k = 1: Equation (9) reduces to d0 ◦ d1 + d1 ◦ d0 = 0 This condition is equivalent to
saying that all the squares in the diagram anticommute.

...

d0

��

...

d0

��
· · · d1 // • d1 //

d0

��

• d1 //

d0

��

· · ·

· · · d1 // • d1 //

d0��

• d1 //

d0��

· · ·

...
...

For k = 2: Equation (9) reduces to d0 ◦ d2 + d1 ◦ d1 + d0 ◦ d2 = 0. This states that
for each p, q the sum of d1 ◦ d1 plus the compositions along consecutive sides of the
parallelogram with vertices on Ωp,q, Ωp−1,q−2, Ωp+1,q and Ωp,q+2 is zero.

• • •
d0

��
•

d2
66

d1
//

d0

��

• d1 // •

•
d2

66

• •
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For any k ≥ 0: Equation (9) states that the sum of the compositions along consecu-
tive sides of all possible parallelograms with diagonal on Ωp,q and Ωp−k,q+k+2 is zero.

• • • •
d0

��
• • • d1 // •

•
d0

��

d1
//
d2

66
d3

88

•

d2
66

• •

•

d3

88

• • •

We must include in the sum, a composition dk/2 ◦ dk/2 along the common diagonal of the
parallelograms, for cases where k is an even integer.

In the same way as in the case of double complexes, a perturbed double complex is
associated to a chain complex that we denominate its total complex, abbreviated Tot(Ω),
and defined as follows:

Definition 5.1. Given a perturbed double complex Ω, its total complex Tot(Ω) is defined
by

Tot(Ω)n =
⊕
p+q=n

Ωp,q

d
∣∣
Ωp,q

=
∑
i≥0

di

Note that the condition stated by equation (9) makes certain that Tot(Ω) is indeed a chain
complex. We observe also that double complexes are just the special cases of perturbed
double complexes in which di = 0 for each i ≥ 2.

If no confusion arises, from now on we omit specific mention of the adjective total and we
will write just Ω when we refer to Tot(Ω). We shall simply say “perturbed double complex”
to mean the total complex associated to it.

One desired feature of perturbed double complex Ω is that the DG algorithm works well
when applied to one of its vertical complexes Ω•,q. What we mean with this last sentence is
that the homotopy equivalent complex obtained after applying the DG algorithm in objects
and morphisms located in the same vertical complex of a perturbed double complex is itself
a perturbed double complex. We see this inmmediately.

First of all, by applying Lemma 2.1 in Ωp,q, we do not change the configuration of perturbed
double complex. Indeed, if f : Ωp,q → Ω′p,q is an isomorphism, then it is possible to obtain a
perturbed double complex Ω′ homotopy equivalent to Ω by substituting Ωp,q by Ω′p,q, and by

replacing any morphism di with image in Ωp,q by the morphism f ◦ di, and any morphism dj

with domain in Ωp,q by dj ◦ f−1.
Secondly, if φ : b1 → b2 is an isomorphism in C, and if D0, E0 are column vectors of object

in C. Given a perturbed double complex Ω with

Ωp,q =

[
b1

D0

]
and Ωp+1,q =

[
b2

E0

]
,
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then eliminating φ by applying Lemma 2.2 does not bring any change in a vertical chain
Ω•,r with r 6= q. Moreover, since the application of this lemma does not bring any new type
of arrow in Ω, we have that the homotopy equivalent complex obtained is also a perturbed
double complex. Indeed, after applying Lemma 2.2, the arrows

dj =

(
αj
βj

)
: Ωp+j−1,q−j → Ωp,q, di =

(
γi εi0

)
: Ωp,q → Ωp−i+1,q+i,

dj =

(
δj
ε0j

)
: Ωp+j,q−j → Ωp+1,q, di =

(
µi νi

)
: Ωp+1,q → Ωp−i+2,q+i,

and

di+j : Ωp+j,q−j → Ωp−i+1,q+i

have been change to

dj =
(
βj
)

: Ωp+j−1,q−j → Ω′p,q, di =
(
εi0 − γiφ−1δ0

)
: Ω′p,q → Ωp−i+1,q+i,

dj =
(
ε0j − γ0φ

−1δj
)

: Ωp+j,q−j → Ω′p+1,q, di =
(
νi
)

: Ω′p+1,q → Ωp−i+2,q+i,

and

di+j − γiφ−1δj : Ωp+j,q−j → Ωp−i+1,q+i

where δ0 and γ0 are the morphisms δ0 : D0 → b2 and γ0 : b1 → E0.
A consequence of all of this is that the DG algorithm can be applied to a vertical complex

in Ω in such a way that the others vertical complexes remain unchanged.

6. Proof of Theorem 2

The main part of the proof of Theorem 2 is to show that the composition of coherently
diagonal complexes in a binary basic operator is also coherently diagonal. So, before proving
this theorem, let us analyze first what occurs when in this type of operator two smoothings
are embedded. Recall that So denotes the class of alternating oriented smoothings.

Proposition 6.1. Let σ and τ be smoothings in So, and let D be a suitable binary planar
operator defined from a no-curl planar arc diagram with output disc D0, input discs D1, D2,
associated rotation constant RD and with at least one boundary arc ending in D1. Then there
exists a closure operator E and a unary operator U such that D(σ, τ) = U(E(σ)). Moreover,
if (Ω, d) is coherently C-diagonal, then D(Ω, τ) is (C −R(τ)−RD)-diagonal.

=

D
U

E

σ σ

τ

Proof. The picture on the right displays the
equivalence between D(σ, τ) and U(E(σ)). If in-
stead of the smoothing σ, the coherently diagonal
complex Ω is embedded in the first input disc of
D, we have that D(Ω, τ) = U(E(Ω)) = U(Ω′),
where Ω′ and hence U(Ω′) are reduced diagonal
complex. To prove that the rotation constant of
D(Ω, τ) is C − R(τ) − RD, we observe that for
each smoothing σ{qσ} in Ω the shifted rotation
number satisfies R(D(σ{qσ}, τ)) = RD +R(σ{qσ})+R(τ) = RD +2r−C+R(τ). Therefore,
2r −R(D(σ{qσ}, τ)) = C −R(τ)−RD �
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Proposition 6.2. Let Ω be a coherently C-diagonal complex. Let [σj]j be a vector of degree-
shifted smoothings in So, all of them with the same rotation number R. Suppose that D is
an appropriate binary operator defined from a no-curl planar arc diagram with associated
rotation constant RD and at least one boundary arc coming from the first input disc. Then
D(Ω, [σj]j) is a (C −R−RD)-diagonal complex.

Proof. The complex Ω is homotopy equivalent to a reduced C-diagonal complex Ω′ .The
complex D(Ω′, [σj]j) is the direct sum ⊕j [D (Ω′, σj)]. Thus, the proposition follows from

the observation that by proposition 6.1, each of its direct summands D (Ω′, σj) is a diagonal
complex with rotation constant C −R−RD. �

Lemma 6.3. Let Ω1 be a coherently C1-diagonal complex. Let Ω2 be a C2-diagonal complex.
Suppose that D is an appropriate binary operator defined from a no-curl planar arc diagram
with associated rotation constant RD and at least one boundary arc coming from the first
input disc. Then D(Ω1,Ω2) is (C1 + C2 −RD)-diagonal.

Proof. Observe that Ω = D(Ω1,Ω2) is a double complex. Indeed, if Ω2 is the chain complex

· · · −→ Ωq−1
2 −→ Ωq

2 −→ Ωq+1
2 . . .

then Ω•,q is the planar composition D(Ω1,Ω
q
2). Assume that Ω2 is in its reduced form, then

any of the smoothings in Ωq
2 has the same rotation number, 2q − C2. Thus, by proposition

6.2, Ω•,q is homotopy equivalent to a reduced diagonal complex Ω′•,q with rotation constant
C1 +C2− 2q−RD. We already know that we can apply delooping and gaussian elimination
in Ω involving only elements of Ω•,q and obtain a homotopy equivalent complex that has no
changes in another vertical chain complex of Ω. In consequence, Ω is homotopy equivalent to
a perturbed complex Ω′ in which each Ω•,q has been replaced by its correspondent reduced
complex Ω′•,q. Thus, for each obtained Ω′•,q and each of its homological degree p, we have
2p−R(Ωp,q) = C1 +C2−2q−RD. Therefore, Ω′ is a diagonal complex with rotation constant
C1 + C2 −RD. �

Proof. (Of Theorem 2) By proposition 3.2, we only need to prove that D is closed under
composition of basic operators. Let (Ω1, d1) ∈ D and let U be a basic unary operator. Since
U(Ω1) is a partial closure of (Ω1, d1), U(Ω1) is diagonal. Furthermore any partial closure of
U(Ω1) is also a partial closure of (Ω1, d1), so U(Ω1) ∈ D.

Let (Ω1, d1) and (Ω2, d2) be elements ofD, and letD be a basic binary operator. By Lemma
6.3, D(Ω1,Ω2) is a diagonal complex. Let C(D(Ω1,Ω2)) be a partial closure of D(Ω1,Ω2).
The fact that C(D) is only a partial closure implies that there is at least one boundary arc
in C(D). Without loss of generality, we can assume that there is one boundary arc ending in
the first input disc of C(D). By proposition 4.6 there exist Ω′1,Ω

′
2 ∈ D and a binary operator

D′ defined from a no-curl planar diagram such that C(D(Ω1,Ω2)) = D′(Ω′1,Ω
′
2). By using

Lemma 6.3, we obtain that D′(Ω′1,Ω
′
2) is a diagonal complex. �

7. Non-split alternating tangles and Lee’s theorem

7.1. Gravity information. Given a diagram of an alternating tangle, we add to it some
special information which will help us to compose the Khovanov invariant of an alternating
tangle in an alternating planar diagram. This is illustrated by drawing, in every strand of the
diagram, an arrow pointing in to the undercrossing, or equivalently (if we have alternation),
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pointing out from the overcrossing. In a neighbourhood of a crossing, the diagram looks like
the one in Figure 5(a). Figure 5(b) shows a diagram of a tangle in which we have added the

o

o

o

o

o

i

i

i

i

i

(a) (b)

Figure 5. (a) Gravity information in a neighbourhood of a crossing. (b) Gravity information

in the tangle. We use: o for out-boundary points and i for in-boundary points.

gravity information to the whole tangle. We observe, (see Figure 5(a)) that if we make a
smoothing in the crossing, the orientation provided by the gravity information is preserved,
and that a 0-smoothing is clockwise and 1-smoothing is counterclockwise, see figure 6. It is
easily observed as well that if we go into a non-split alternating tangle for an in-boundary
point and turn to the right (a 0-smoothing) every time that we meet a crossing, we are going
to get out of the tangle along the boundary point immediately to the right. Hence, the in-
and out-boundary points of the diagram of the tangle are arranged alternatingly. These two
observations are stated in the following two propositions:

c
lo

c
k
w

is
e

couterclockwise

Figure 6. The smoothings in the diagrams preserve the gravity information

Proposition 7.1. The 0-smoothings and 1-smoothings preserve the gravity information. The
first ones provides a clockwise orientation of the pair of strands in the smoothing, and the
last provides a counterclockwise orientation.

Proposition 7.2. In any non-split alternating tangle, if the k-th boundary point is an in-
boundary point, then the (k + 1)-th boundary point is an out-boundary point.

Propositions 7.1 and 7.2 indicate that the smoothings of a tangle could be drawn as trivial
tangles in which arcs are oriented alternatingly. Therefore, the Khovanov homology produces
an alternating planar algebra morphism in the sense of [BN2].

7.2. Proof of Theorem 1. This proof is a direct application of Theorem 2, the fact that the
Khovanov homology is an alternating planar algebras morphism, and the following proposi-
tion

Proposition 7.3. The Khovanov complex of a 1-crossing tangle is coherently diagonal;
namely, it is an element of D(2).
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Proof. We just need to check each of the possible partial closures of the two 1-crossing
tangles to observe that all of them have a reduced diagonal form. One of this can be seen in
example 4.4. �
Proof. (Of Theorem 1) Any non-split alternating k-strand tangle with n crossing T ,
is obtained by a composition of n 1-crossing tangles, T1,...,Tn, in a n-input type-A planar
diagram. Since the Khovanov homology is a planar algebra morphism, by using the same
n-input planar diagram for composing Kh(T1),...,Kh(Tn) we obtain the Khovanov homology
of the original tangle. According to Theorem 2, this is a complex in D. �

Corollary 7.4. The Khovanov complex [T ] of a a non-split alternating 1-tangle T is homo-
topy equivalent to a complex

· · · −→ Ωr{2r +K} −→ Ωr+1{2(r + 1) +K} −→ · · ·
where every Ωr is a vector of single lines, and K is a constant.

Proof. We only have to apply theorem 1 and see that the rotation number of a single arc,
which is the only simple possible smoothing resulting from a 1-tangle, is one. �

Figure 7 shows a diagonal complex whose smoothings have only one strand. Since the
rotation number of a smoothing with a unique strand is always 1, we have that the degree
shift and the homological degree multiplied by two are in a single diagonal, i.e., 2r − qr is a
constant.

{1}{-3} {-1} {5}

0 1 2 3 4
r

R
 0-2

0 -2 0

0

0

42 6

Figure 7. A diagonal complex with only one strand in each of its smoothings.

Corollary 7.5. (Lee’s theorem)The Khovanov complex Kh(L) of a non-split alternating
Link L is homotopy equivalent to a complex:

· · · −→
(

Φr{qr + 1}
Φr{qr − 1}

)
−→

(
Φr+1{qr+1 + 1}
Φr+1{qr+1 − 1}

)
−→ · · ·

where every Φr is a matrix of empty 1-manifolds, qr = 2r + K, K a constant, and every
differential is a matrix in the ground ring.

Proof. Every non-split alternating link L is obtained by putting a 1-strand tangle T in
a 1-input planar diagram with no boundary. Hence, by applying the operator defined from
this 1-input planar diagrams to the Khovanov complex of this 1-strand tangle, we obtain
the Khovanov complex of a link L. By doing that, the vectors of open arcs that we have in
corollary 7.4 become vectors of circles. Moreover, every cobordism of the complex transforms
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in a multiple of a dotted cylinder. Thus, using Lemma 2.1 converts every single loop in a
pair of empty sets ∅{2r+K + 1}, ∅{2r+K − 1} and every dotted cylinder in an element of
the ground ring. �

Figure 8 displays the closure of the complex in Figure 7. After applying lemmas 2.1 and
2.2 we obtain the complex supported in two lines displayed on Figure 8, as stated in Lee’s
Theorem.

{6}

0 1 2 3 4
r

0 0

0

0

{4}

{-2}

{-4}

{2}{-2}

0

Figure 8. A closure of a coherently diagonal complex is a width-two complex.

Remark 7.6. It is clear that if our ground ring is Q, as in the case of [Lee1], we can use
repeatedly lemma 2.2 in the complex in corollary 7.5 and obtain from this complex, one
whose differentials are zero, i.e, the Khovanov homology of the link.
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