Regina Meta-group option
April-12-12
6:12 AM

Also consider mods from the Binghamton post-mortem.

Main redS el @,@Aﬁmfoaq:%ﬂ\ar@ stress on T Wee B 26fG7 ¢
o€ old= aliorh  aduebgs of uu/.

& Shou/ bsc of Ty [ A, No.

% switch 4o dhe iyl verabl s L v

Abstract. The a priori expectation of first year elementary school students who were just introduced to the
natural numbers, if they would be ready to verbalize it, must be that soon, perhaps by second grade, they'd
master the theory and know all there is to know about those numbers. But they would be wrong, for number
theory remains a thriving subject, well-connected to practically anything there is out there in mathematics.

I was a bit more sophisticated when | first heard of knot theory. My first thought was that it was either trivial or
intractable, and most definitely, | wasn't going to learn it is interesting. But it is, and | was wrong, for the reader
of knot theory is often lead to the most interesting and beautiful structures in topology, geometry, quantum
field theory, and algebra.

Today | will talk about just one minor example, mostly having to do with the link to algebra: A straightforward
proposal for a group-theoretic invariant of knots fails if one really means groups, but works once generalized to
meta-groups (to be defined). We will construct one complicated but elementary meta-group as a meta-
bicrossed-product (to be defined), and explain how the resulting invariant is a not-yet-understood yet
potentially significant generalization of the Alexander polynomial, while at the same time being a specialization
of a somewhat-understood "universal finite type invariant of w-knots" and of an elusive "universal finite type
invariant of v-knots".

Modified from <http://www.math.toronto.edu/~drorbn/Talks/Binghamton-1203/index.html>
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Vhy Happy? e Applications to w-knots. pele = 877 emns 210 8 o] 87, cont.
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topology is the work of mortals.”

A
Leopold Kronecker (modified ) / w-story.

www.katlas.org The ke el

A ad) Lo 1Tl Tk bl tien OF  Aarreht
2. Tle ) Eor B oA w#wnf/b’? +o “ij/ﬂ;.

Nl
9. Tle wflj%/'ﬂj /Ar/(lfﬁmﬂf Fo/” ‘}M\?/fU, U/é@ o)

A/@XW)JM Aa%%ﬂy} \A/fofﬂ/éfﬂ’j OF C(/p//w%/

vl

2012-06 Page 3



Al vxa) o/~ For™ Trng LS.

2012-06 Page 4



