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Abstract. A straightforward proposal for a group-theoretic
invariant of knots fails if one really means groups, but works
once generalized to meta-groups (to be defined). We will con-
struct one complicated but elementary meta-group as a meta-
bicrossed-product (to be defined), and explain how the re-
kulting invariant is a not-yet-understood generalization of the
Alexander polynomial, while at the same time being a spe-
cialization of a somewhat-understood “universal finite typc
invariant of w-knots” and of an elusive “universal finite typc
invariant of v-knots”.

DBicrossed Products. If G = HT is a group
presented as a product of two of its subgroups, with [INT =
{e}. then also G = TH and G is determined by H. T, and
the “swap” map sw' : (t,h) — (B'.t') defined by th = h't’
The map sw satisfies [l) and (2) below; conversely, if sw
T x H — H x T satisfies (1) and (2) (+ lesser conditions)
then (3) defines a group structure on H x T', the “bicrossec
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A Meta-Bicrossed-Product is a collection of sets F(H,T') and
wperations fmt?, him¥ and s-n..'f]f!;} (and lesser ones), such that
fm and hm are “associative” and (1) and (2) hold {(+ lesser
conditions). A meta-bicrossed-product defines a meta-grouy
with Gy = g(X, X) and gm as in (3).
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A Group Computer. Given G, can store group clements anc w | Iy we | hy s
perform operations on them: swth . te | @ B 1y +{vife) B(L+{v)/e)
mi v 6 /e 8 — /e
-s0 that it f where € := 1+ a, (o) := 37, o, and () := 32, ., v, and let
BE] met = mb* it ! ’
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IAlso has S, for inversion, T, Tnit insertion, d,. for register dele-
tion, A;  for clement cloning,” p? for renamings, and (Dy, Dy) —Theoren. Z% i a tangle invariant (and even more). Red

1D U Dy for merging, and many obvious composition axioms relat-

ing those. P=Aa:q,y:g}t=r=1{d,P}U{dr}

stricted to knots, the w part is the Alexander polyvnomial
Restricted to links, it contains the mmltivariable Alexanden

A Meta-Group.  Is a similar “computer”, only its internal
ktructure is unknown to us. Namely it is a collection of sets

polvnomial. Restricted to braids, it is equivalent to the Bu-
ran representation.

{ Gy} indexed by all finite sets X, and a collection of oper-
ations mz”, Sy, e, dpy A, py, and U, satisfying the exac
kame linear properties.

‘Why Happy? e Applications to w-knots. e Everything that
[ know about the Alexander polynomial can be expressec
leanly in this language (even if without proof), except HF
wut including genus, ribbonness, cabling, v-knots, knotted,

xample 1. The non-meta example, Gy = GV,
[Example 2. Gy

olumn operations, and “block diagonal” merges.

= My x(Z), with simultancous row '(mdF'ml)hS-' cte.,

and there’s potential for vast generalizations.
Fits on one sheet, including implementation.
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