Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Dror Bar-Natan at Knots in Washington XXXIV
http://www.nath.toronto.edu/~drorbn/Talks/GWU-1203/

http://www.math.toronto.edu/~drorbn/Talks/GWU-1203/ Foots & refs on PDF version

Abstract. A straightforward proposal for a group-theoretic invariant of knots fails if one really means groups, but works once generalized to meta-groups (to be defined). We will construct one complicated but elementary meta-group as a meta-bicrossed-product (to be defined), and explain how the resulting invariant is a not-yet-understood generalization of the Alexander polynomial, while at the same time being a specialization of a somewhat-understood "universal finite type invariant of w-knots" and of an elusive "universal finite type invariant of v-knots".

n- Define meta-guarde

Knot diegram Tangle diegram

817

Knot/tangle invariant

Zidknote g - sasy

St. 7(0) = 7(0)

Example (=) roy & ops.

Jda. Grang G (96 9) 8

Ri=(9696) Rn=(9/6)

Bicrosud Products

3/9/ -> 9/9/=1=9/9/ So =-!

meta Bicrossel

 $\frac{\sqrt{3}}{\sqrt{2}} \frac{\sqrt{7}}{\sqrt{2}} \frac{\sqrt{7}}{\sqrt{7}} \frac{\sqrt{7}}{\sqrt{7}}$

/ - -

Mar Community District Deliver 1d Alexander Deliver 110	
Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2	
B(HIT) X ops	What is it
Program 4 comps.	
'ly,	W 4~ 15 /
	coming From.