A Bit on Maxwell's Equations

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^{n}, every closed form is exact. That is, if $d \omega=0$, then there exists η with $d \eta=\omega$.
- Integration by parts: $\int \omega \wedge d \eta=$ $-(-1)^{\operatorname{deg} \omega} \int(d \omega) \wedge \eta$ on domains that have no boundary.
- The Hodge star operator \star which satisfies $\omega \wedge$ $\star \eta=\langle\omega, \eta\rangle d x_{1} \cdots d x_{n}$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q \mapsto \int_{a}^{b}\left(\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right) d t$ occur when $m \ddot{q}=-V^{\prime}(q(t))$. That is, when $F=m a$.

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The Vector Field is a compactly supported 1 -form A on \mathbb{R}^{4} which extremizes the action

$$
S_{J}(A):=\int_{\mathbb{R}^{4}} \frac{1}{2}\|d A\|^{2} d t d x d y d z+J \wedge A
$$

where the 3 -form J is the charge-current.
The Euler-Lagrange Equations in this case are $d \star d A=J$, meaning that there's no hope for a solution unless $d J=0$, and that we might as well (think Poincaré's Lemma!) change variables to $F:=d A$. We thus get

$$
\begin{array}{|lll|}
\hline d J=0 & d F=0 & d \star F=J \\
\hline
\end{array}
$$

These are the Maxwell equations! Indeed, writing $F=\left(E_{x} d x d t+E_{y} d y d t+E_{z} d z d t\right)+\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$, we find:

$d J=0 \Longrightarrow$	$\frac{\partial \rho}{\partial t}+\operatorname{div} j=0$	"conservation of charge"
$d F=0 \Longrightarrow$	$\operatorname{div} B=0$	"no magnetic monopoles"
	$\operatorname{curl} E=-\frac{\partial B}{\partial t}$	that's how generators work!
$d * F=J \Longrightarrow \quad$$\operatorname{div} E=-\rho$	"electrostatics"	
	$\operatorname{curl} B=-\frac{\partial E}{\partial t}+j$	that's how electromagnets work!

Exercise. Use the Lorentz metric to fix the sign errors.
Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.
Exercise. With $d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ use $S=m c \int_{e_{1}}^{e^{2}}(d s+e A)$ to derive Feynman's "law of motion" and "force law".

November 30, 2011; http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11\#OtherFiles

