A Strange Weight System by Duzhin

May-18-11
9:04 AM

Date: Tue, 17 May 2011 10:25:52 +0400
From: Sergei Duzhin <...>
To: "D. Bar-Natan" drorbn@math.toronto.edu Subject: kleinian weight systems

Dror,

About 10 years ago I told you the construction of a weight system for 1-3-valent graphs starting from a skewsymmetric function of 3 variables $F(x, y, z)$ that satisfies the identity $F(x, y, z) * F(u, v, z)-F(x, u, z)^{*} F(y, v, z)+F(x, v, z)^{*} F(y, u, z)=0$
(a typical example is $\operatorname{det}([f(x), f(y), f(z)],[g(x), g(y), g(z)],[h(x), h(y), h(z)])$, but there are others). To evaluate this weight system on a given diagram, you assign variables to edges, take the product over vertices of the values $\mathrm{F}(\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3$) for the three edges meeting at a vertex, and take the average over permutations (of inner and outer vertices separately).

You explained me that the resulting weight system is always equivalent to one coming from sl_2. Now I tried to reconstruct this argument, and I could not:(May I ask you to give a hint, if you still remember that?

Sergei

From mail/Duzhin/110520:

Then the value of the corresponding weight system on the 4-wheel is obtained as follows:

$l_{x_{2}} \quad \begin{array}{l}\text { Symmetrize this separately or er the } \\ \text { permutations of }\end{array}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ (outer edges) $)$
and of $\left(y_{1}, y_{2}, y_{2}, y_{3}\right)$ (inner edges").
You'll get a polynomial symmetric with respect to
$S_{\text {in }} \times S_{\text {out when in and ant are numbers of }}^{\text {our and er edges. }}$
inner and outer

What mans 1^{3} is 10 ?

Let W_{D} be Wouzkin, extended with dots.
Q. Compute

$$
W_{D}\left(Q_{0}^{\infty} \notin \nmid . .\right)
$$

Are there universal relations between such dotted arcs \& circles?

10

$$
x_{1} y_{1}^{2}-x_{1} y_{2}-2 x_{2} y_{1}+2 x_{3}=0
$$

check: if all the $x_{\text {; }}$ are the sane and all $y_{i}=2$, this is $4 x-2 x-4 x+2 x=0$

Does $Y^{2}=1^{3}$ implies IHX?

$$
=y_{1}\left(\frac{2}{n}-\dot{K}\right)-\left(\frac{a n}{6}+\frac{a}{i n}-k_{0}^{\infty}\right)
$$

Whit follous from
What's the rebotionship between $1^{3}=1 D \& 1^{4}=0$?

$$
\square=\begin{aligned}
& x^{2}-x=0 \\
& \Rightarrow x=0,1
\end{aligned}
$$

yit $O=x_{1}^{2}-x_{2}=0$

