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Abstract

If an augmented algebra A over @ is filtered by powers of its augmen-
tation ideal I, the associated graded algebra grr A need not in general be
quadratic: although it is generated in degree 1, its relations may not be
generated by homogeneous relations of degree 2. In this paper we give a
criterion which is equivalent to grr A being quadratic, generalizing a result
of [Hutchings] in which the algebra was the group ring of the pure braid
group and the ideal was the augmentation ideal. We apply this criterion
to the pure virtual braid group (also known as the quasi-triangular group)
and show that the corresponding associated graded ring is quadratic.

[Alt. title: The Pure Virtual Braid Group is Quadrati(:}l 1 (it ﬂ\’j
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1 Introduction

This paper will ultimately be concerned with the pure virtual braid groups
PuB,,, for all n € N, generated by symbols R;;, 1 <4 # j < n, with relations
the Reidemeister IIT moves (or quantum Yang-Baxter relations) and certain
commutativities:

By R Ry = By Rip Ry (1)
RijRyp = By Ry, (2)

with i, 7, &, 1 distinct. This group is referred to as the quasi-triangular group
QTr, in [BarEnEtRa]. We will also be concerned with the related algebra
pob,,, generated by symbols r;;, 1 < i # j < n, with relations the ‘6-term’ (or
6T) relations, and related commutativities:

Yiji o= [Pig, ikl [Pigy rie] + [Pik, 7] = 0, (3)
eff = lrags ] =0

with ¢, 7, k&, distinct. This algebra is the universal enveloping algebra of the
quasi-triangular Lie algebra qtt, in [BarEnEtRa).

We will show that FPuB,, is a ‘quadratic group’, in the sense that if its rational
group ring Q B, is filtered by powers of the augmentation ideal [, the associ-
ated graded ring gr PuB,, is a quadratic algebra: i.e.; a graded algebra generated
in degree 1, with relations generated by homogeneous relations of degree 2. We
note that, in different language, this is the statement that Pof3,, has a universal
finite-type invariant, which takes values in the algebra pob,,.

In [Hutchings], a criterion was given for the quadraticity of the pure braid
group. The proof relied on the geomelry of braids embedded in R*. In order to
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generalize this criterion to all finitely presented groups, we developed an alge-
braic prool of the criterion. This proof turned out not to rely on the existence of
an underlying group, and applies instead to algebras over Q, filtered by powers
of an augmentation ideal I. Indeed, this criterion arguably lives naturally in
an even broader context, such as perhaps augmented algebras over an operad
(or the related ‘circuit algebras’ of [BN-WKO]). In the first part of this paper
we state this generalized criterion as it applies to any augmented algebra and
prove that, if satisfied, it implies that the associated graded algebra is quadratic
(see Theorem 2). In the second part of the paper, we specialize to PuB,,. We
present a basis for the quadratic dual algebra pob! | and use this basis to prove
that FuB,, satisfies the generalized Hutchings Criterion. It follows that PuB,,
is quadratic. As pointed ouf in section 8.5 of [BarEnEtRa], this implies that
H*(PuB,) = pub), as algebras.

1.1 Overview of the Hutchings Criterion
1.1.1 Group Theoretic Background

Since the classic setting of the Hutchings criterion is that of group rings, we
identify the attributes of group rings which we rely on and will want to see
preserved in our generalized context. We recall the follow basic fact:

Proposition 1 (See [MKS], s. 5.15). If G if given by the short exact sequence

1N IFPG—G—=1

where FG is a free group generated by symbols {g, : p € P} and N is a normal
subgroup of F'G generated by the sel {r;: g € Q}, then the rational group ring
of G is given by the exact sequence

0= (N-1)=QFG—-QG—0
where (N — 1) is the two-sided ideal in QFG generated by {(r, — 1) : g € Q}.
We can clearly restrict the second exact sequence to the exact sequence
0= (N—-1)—=Ipg—Ig—0 (4)

where Ire and I are the augmentation ideals of QFG and QG respectively.

1.1.2  Generalized Algebraic Setting “ el

’——\_\/—'

By analogy with the above group case, we take A to be an augmented algebra
over (O with 2-sided augmentation ideal 74, and F to be the free algebra over
@ with the same generating set as A, with 2-sided augmentation ideal Ip. In
particular we assume an exact sequence:

0—J1s— A0 —0

i 4 77.0/@ A N9
t Ju‘/fq}c.r\gﬁ
fex
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By analogy with the ideal (N — 1) in the group context, we let M C Ip C I
be a 2-sided ideal such that:

0—M-—F—A4—10
0—M-—Ip—Is—0

are exact. It will be important in what follows that Ip is a free algebra, as well

as a free I'-module. LY, /"4/:’} Z
Finally we will generally assume that M C IZ. In the group context, this} ’ /I p

follows if each relator of the group has total degree zero in each generator.

Although this requirement may not be necessary if one were to develop the

Hutchings Criterion in complete generality, it does simplify things and at least

presents no problem in many applications, including the specific application we

have in mind (i.e. quadraticity of PuB,,).

1.1.3 The Two Canonically Associated Graded Algebras

A is filtered by powers of I4. One associates to the pair (A4, [4) two canonically
defined graded algebras. Firstly, there is the associated graded of the above
filtration, denoted gryA. We have grrd = @, IT/I7"!. It is clear that gr;A
is generated as an algebra by its degree one piece V' := I4/I%, a vector space
over Q.

Secondly, there is a quadratic algebra U, which we will sometimes refer to as
the associated guadratic algebra. U is generated as an algebra over @@ by V'; and,
it 'V is the rational tensor algebra over IV (with tensor products over @), we let
(MR) be the two-sided ideal in TV generated by the vector subspace R C V &gV
of degree two relations of gryA: i.e., R = ker(p : La/I3 ®q La/I5 — I3/13),
where g is the multiplication in gr;A induced from multiplication in 4. Then
we define U := TV/{R). We will denote by U,, the m-th graded piece of U.

We note that since U has the same generators and the same guadratic
relations as gryA, there is always a surjection U — gryA. Quadraticity of

grrd is thus equivalent to the fact that this surjection is an isomorphism ,ﬁ‘
Up = I'T/ITF, for all m. We will often use this alternative definition of 4 s
quadraticity. the ﬂ(@/‘ﬂ’f{ b,?—
Fa {‘f’;dﬁ
1.1.4 1t(f:‘renex a{ors and Relatuinsot’?r the Associated Quadratic Alge- (,\/nu(" U ;ir/ﬂlﬁj
W > 4 . 989 b9
ke L)t"(if\‘!,‘: { We will see¥hat V& o2 47/ [@%Am, or equivalently that if, in the follow- IL/ Lt
n,.-q‘)( a.d@l _1 / ing sequence, we define ¢ as the inclusion and F” as the projection to coker ¢,  rutl
(S) Is ”\' '\"‘—l—j the sequence is exact:
b4
1 h . FY
v 0 —s [4 I 15 54T £ coker 1 = V™ 5 0 (5)
'\H\
lS \I@Q By definition, the spaces V3™ penerate the U,,.
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‘We get a space of free generators for the relations in U/ as follows. Define:
Ry, j = v ®ai &g R Qg 1V ®alm—j-2)

Then a space of free generators for the degree m relations in U is given by:

m—2

= @mmd

=1

1.1.5 Generators and Relations for /™

We introduce a ‘product’ g : I$4™ — I54™ ! which is multiplication of com-
ponents ¢ and i+1 in the tensor product. Since we are tensoring over A, p; =
for all 7,7, so we often refer to the product as simply pu,.

I$A™ can viewed as a space of generators for I7%, for any m, because we
have the surjection plit » I5A™ 5 P,

By analogy with R, we define R := ker(u, : In ®a I4 — I%), and by
analogy with %R, ; and R,,,, we define:

R;iuj o I,?Aj ®4RY®a IEA(M_j_z) fhet 5 an aéwan_g

vm
alIl mnﬂ A‘m
d =D R, ©) A -'Ri)"’iﬁ
2 ke

By construction, the 4, and hence give at least some of
the relations for I'{' in this presentation; as we will see, if the Hutchings Crite-

rion (explained in Theorem 2 below) is met, R2 gives all the relauom in this
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1.1.6 The Hutchings Criterion
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We are now in a position to state our criterion for quadraticity of A:

V.~ With notation as above, we have the fol-

= :
lowmq -commumtwe diagram.:
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C - i ﬂ[- where 84 consists of the summand-wise inclusions, F° is defined in (5), 8™
MY i ) and Fgy,, are the maps induced by commutativity of the lower triangle.

Yali&®1tda! Then A s quadratic if and only if Fs,. 1s surjective. ot | }T“/ff' bt

This generalizes a result first obtained in [Hutchings], where A was the groui)} Vi /fj .

ring of the pure braid group (see also [BNStoil). C jf”[
In the cases of interest to us, we can get more precise information about Rﬁl,

and hence also ker @', Specifically,

Proposition 2. Under the conditions of the previous theorem, let us take {y, :
g € Q} to be a minimal sel of generators for M as a two-sided F-module.
Suppose the {y, + I : g € Q} are linearly independent in (M + I2)/I%. Then
there is an isomorphism F:

B e Ry,

as vector spaces over Q. Moreover, 8™ = Oy o F', where Oy is the summand-

wise inclusion of R, into VO™,

1.2 How the Hutchings Criterion is Useful

Note that, under the conditions of the last Proposition, the elements of ker 9y =
ker &% correspond to relations among relations in the associated quadratic
algebra {7, which may be called infinitesimal syzygies. It is often the case that
the syzygies of a quadratic algebra can be determined quite explicitly, using
quadratic duality. Essentially, if the quadratic algebra U is Koszul, then the
syzygies are generated by U™ (i.e. the degree 3 part of the quadratic dual U’
of U).

Similarly, the elements of ker 84 are relations among the elements of RZ,
which we may call global syzygies. The Hutchings Criterion asserts that if Figy.
maps ker da onto ker dy, then IQ”/IAT’H >,

In the context of IB,,, if we take A to be the group ring and I 4 its augmen-
tation ideal, it is possible to interpret the spaces I$*™ as spaces of ‘m-singular
virtual braids — essentially virtual braids with m ‘semi-virtual’ double points
(subject to a certain equivalence relation) - see [GPV]. Furthermore, the asso-
ciated quadratic algebra pob,, is a kind of ‘infinitesimal’ or classical version of
PuB,,. One then finds that the map FOiga map from singular virtual braids to
pob,, which *forgets topology’, in the sense that it forgets all information relat-
ing to over- and under-crossings, retaining only the combinatorial information
of which strands in the singular virtual braid have semi-virtual double points
with which other strands (and the order of the double points). This map F°
maps global relations (i.e. the RZ) to infinitesimal relations (i.e. the Ry,),
and global syzygies (ker d4) to infinitesimal syzygies (ker 7). However, in
general the map FU need not be surjective on syzygies. Surjectivity of F¥ on
syzygies (the Hutchings Criterion) may be stated informally as:

‘Every relation among infinitesimal relations holds also among global rela-
tions’ (see [Hutchings], section 2.3.2).



