KTG Relations

- An order 3 symmetry of Y.
- The anti-symmetry of X under 90 degrees rotation.
- R2
- R3
- R4+ and R4-.
- Behaviour under unzip.
- Behaviour under delete.
- Behaviour under connect sum.
- Idempotency of Y.
- Idempotency of X.
- Writing X in terms of Y and $\mathrm{R}+$ and R -.
- Writing X in terms of Y and F.
- $\mathrm{R}+, \mathrm{R}$-, and F in terms of each other.

Writing X in terms of Y and $R^{ \pm}$:

An order 3 symmetry of Y :

check That this is order 3:

$$
\begin{aligned}
& \left(Y_{1} ; Y_{2} ; Y_{3}\right) \xrightarrow{\mapsto}\left(Y_{1} j Y_{1} \bar{Y}_{3} ; Y_{2} \bar{Y}_{3}\right) \xrightarrow{\rightleftarrows}\left(Y_{1} ; Y_{1} Y_{3} \bar{Y}_{2} ; Y_{1} V_{3} V_{3} \bar{Y}_{2}\right) \\
& \xrightarrow{3}\left(Y_{1} ; Y_{1} Y_{2} \bar{Y}_{1}, Y_{1} Y_{3} \bar{Y}_{2} Y_{2} \bar{Y}_{1}\right)=\left(Y_{1}, Y_{1} Y_{2} \bar{Y}_{1} ; Y_{1} Y_{3} \bar{Y}_{1}\right) \\
& =\left(Y_{i}, Y_{2} \gamma_{z}\right)
\end{aligned}
$$

$$
\text { \& } \begin{aligned}
\left(x_{1}^{+} ; x_{2}^{+} ; x_{3}^{+}\right) & =\left(x_{1}^{-} ; x_{1}^{-} \overline{x_{3}^{-} ; x_{2}^{-}}\right) \\
\left(x_{1}^{-} ; x_{2}^{-} ; x_{3}^{-}\right) & =\left(x_{1}^{+} ; x_{1}^{+} \overline{x_{3}^{+} ; x_{3}^{+}}\right)
\end{aligned}
$$

check that this is of ordor 4 :

$$
\begin{aligned}
&\left(x_{1 j} x_{2} j x_{3}\right) \stackrel{1}{\longrightarrow}\left(x_{1} ; x_{1} \bar{x}_{3} ; x_{2}\right) \stackrel{\xrightarrow{2}\left(x_{1} ; x_{1} \bar{x}_{2} j x_{1} \overline{x_{3}}\right)}{ } \\
& \stackrel{H}{H}\left(x_{1} ; x_{1} x_{2} \overline{x_{1}} ; x_{1} x_{3} \overline{x_{1}}\right)=\left(x_{1} ; x_{2 j} x_{3}\right)
\end{aligned}
$$

Reidemeister 2:

$$
\begin{aligned}
& x^{+} x^{-}=1 \text { or } \\
& \left(x_{1}^{+1} \underline{x_{1}^{+2}} ; x_{2}^{+1} \underline{\left.x_{1}^{+2} \underline{x_{3}^{+2}} ; x_{3}^{+1} \underline{x_{3}^{+2}}\right)=(1,1,1)}\right.
\end{aligned}
$$

Reidemeister 3

$$
x^{12,3} x^{13,2,4} x^{13,4}=x^{12,34} x^{124} x^{14,2,3}
$$

Reidemeistar 4

$$
X^{123} x^{13,24} Y^{134}=Y^{12,39} X^{1,2,34}
$$

Behnviour undar unzip

$$
(1,1,1)=\left(Y_{1}^{1} Y_{1}^{2} ; Y_{2}^{1} Y_{3}^{2} Y_{1}^{2} ; Y_{3}^{1} Y_{2}^{2} Y_{1}^{2}\right)
$$

Behaviour undor delite
Behaviour undor connect sum:

unzipele tat $=1$
(0) $-0 \rightarrow 0$ tirind

