The 2D Lie Algebra on Arbitrary Arrow Diagrams

July-07-09 9:38 AM

First, a quote from the current state of WKO:

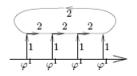
3.6.3. Example: The 2 Dimensional Non-Abelian Lie Algebra. Let \mathfrak{g} be the Lie algebra with two generators $x_{1,2}$ satisfying $[x_1,x_2]=x_2$, so that the only non-vanishing structure constants b_{ij}^k of \mathfrak{g} are $b_{12}^2=-b_{21}^2=1$. Let $\varphi^i\in\mathfrak{g}^*$ be the dual basis of x_i ; by an easy calculation, we find that in $I\mathfrak{g}$ the element φ^1 is central, while $[x_1,\varphi^2]=-\varphi^2$ and $[x_2,\varphi^2]=\varphi^1$. We calculate $\mathcal{T}^w_{\mathfrak{g}}(D_L)$, $\mathcal{T}^w_{\mathfrak{g}}(D_R)$ and $\mathcal{T}^w_{\mathfrak{g}}(w_k)$ using the "in basis" technique of Equation (17). The outputs of these calculations lie in $\mathcal{U}(I\mathfrak{g})$; we display these results in a PBW basis in which the elements of \mathfrak{g}^* precede the elements of \mathfrak{g} :

$$T_{\mathfrak{g}}^{w}(D_{L}) = x_{1}\varphi^{1} + x_{2}\varphi^{2} = \varphi^{1}x_{1} + \varphi^{2}x_{2} + [x_{2}, \varphi^{2}] = \varphi^{1}x_{1} + \varphi^{2}x_{2} + \varphi_{1},$$
 (18)

$$T_{\mathfrak{g}}^{w}(D_{R}) = \varphi^{1}x_{1} + \varphi^{2}x_{2}, \tag{19}$$

$$T_g^w(w_k) = (\varphi^1)^k$$
. (20)

For the last assertion above, note that all non-vanishing structure constants b_{ij}^k in our case have k=2, and therefore all indices corresponding to edges that exit an internal vertex must be set equal to 2. This forces the "hub" of w_k to be marked 2 and therefore the legs to be marked 1, and therefore w_k is mapped to $(\varphi^1)^k$.



Note that the calculations in (18) are consistent with the relation $D_L - D_R = w_1$ of Theorem 3.13 and that they show that other than that relation, the generators of \mathcal{A}^w are linearly independent.

No idens.