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6.1. Immanants and the Conway polynomial. Theorem 3 and proposition 4.2 show (in
particular) that both the map D 7→ det IM(D) and the map D 7→ per IM(D) are weight
systems. It is tempting to look for common generalizations of these two weight systems.
In this section, which may be of some independent interest, we sketch just such a gener-
alization. The basic idea is that just where the character of the alternating representation
of the symmetric group Sm is used in the definition of det and the character of the trivial
representation is used in the definition of per, one can put the character of an arbitrary
representation of Sm:

Definition 6.1. Let [σ] denote the conjugacy class of a permutation σ. Let ZSm be the free
Z-module generated by the conjugacy classes of Sm. Let ZS? be the graded Z-module whose
degree m piece is ZSm. The natural embedding ι : Sm×Sn → Sm+n makes ZS? an algebra by
setting [σ][τ ] = [ι(σ, τ)]. Identifying ZS? with its dual by declaring each individual conjugacy
class [σ] to be of unit norm, the product on ZS? becomes a co-product on ZS?

? = ZS?.

Exercise 6.2. Verify that with the above product and co-product ZS? becomes a graded
commutative and co-commutative Hopf algebra, and that the primitive elements of ZS? are
exactly the classes of cyclic permutations (and thus ZS? has exactly one generator in each
degree).

Definition 6.3. (Compare with [Lit]) Let M be an m×m matrix. The universal immanant
imm M of M is defined by

imm M =
∑

σ∈Sm

[σ]
m∏

i=1

Miσi ∈ ZSm.

(Exactly the same as the definition of det M , only with [σ] replacing (−1)σ).

Composing the universal immanant with characters of arbitrary representations of Sm, one
gets specific complex valued “immanants”. Taking the representation to be the alternating
representation, one gets det M . Taking it to be the trivial representation, one gets per M .
Much is known about many other immanants; see e.g. [GJ, St1, St2].

In our context, we will be interested in the universal immanant of the intersection matrix
of a chord diagram. By abuse of notation, we will write imm D for imm IM(D).

Theorem 5. (1) The map imm : {chord diagrams} → ZS? descends to a well defined
map imm : A∇ → ZS?.

(2) The thus defined imm : A∇ → ZS? is a morphism of Hopf algebras.
(3) The image of the adjoint map imm? : ZS?

? = ZS? → A∇? = W is the subalgebra of W
generated by the weight systems of the coefficients of the Conway polynomial.

Proof. (sketch) Let Lm be the degree m piece of log WC , and let Cm ∈ Sm be a cyclic
permutation. Re-interpreted in our new language, proposition 3.13 is simply the statement
imm?[Cm] = −Lm and equation (14) becomes the multiplicativity of imm?. It follows that
the image of imm? is equal to the subalgebra of the algebra of functionals on chord diagrams
generated by the Lm’s. As Lm is known to be a weight system and the product of two weight
systems is again a weight system, it follows that the image of imm? is in W and thus imm
descends to A∇. Finally notice that the algebra generated by the Lm’s is equal to the algebra
generated by the weight systems of the coefficients of the Conway polynomial. ¤



It is easy to check (or deduce from theorem 5) that imm?[σ] = 0 if σ has a cycle of an
odd length. By evaluating imm?[σ] on chord diagrams whose intersection graph is a union
of polygons of an even number of sides, one can see that imm? restricted to permutations
with no cycles of odd length is injective.

Exercise 6.4. Check that if IM(D) is replaced by IM(D)+λI for any non-zero constant λ and
A∇ and W are replaced by A and A? in the statement of theorem 5, the theorem remains
valid, with the unique element of G∞A? adjoined to the generators of the image of imm?.


