PSU Talk

January-26-09 8:58 AM

(u, v, and w knots) x (topology, combinatorics, low algebra, and high algebra) <u>Department of Mathematics Colloquium</u>

Penn State University, February 5, 2009

Abstract. My subject is a Cartesian product. It runs in three parallel columns - the <u>u</u> column, for <u>u</u>sual knots, the <u>v</u> column, for <u>vi</u>rtual knots, and the <u>w</u> column, for <u>w</u>elded, or <u>w</u>eakly virtual, or <u>w</u>armup knots. Each class of knots has a topological meaning and a "finite type" theory, which leads to some combinatorics, somewhat different combinatorics in each case. In each column the resulting combinatorics ends up describing tensors within a different "low algebra" universe - the universe of metrized Lie algebras for <u>u</u>, the richer universe of Lie bialgebras for <u>v</u>, and for <u>w</u>, the wider and therefore less refined universe of general Lie algebras. In each column there is a "fundamental theorem" to be proven (or conjectured), and the means, in each column, is a different piece of "high algebra": associators and quasi-Hopf algebras in one, deformation quantization à la Etingof and Kazhdan in the second, and in the third, the Kashiwara-Vergne theory of convolutions on Lie groups. Finally, <u>u</u> maps to <u>v</u> and <u>v</u> maps to <u>w</u> at topology level, and the relationship persists and deepens the further down the columns one goes.

The 12 boxes in this product each deserves its own talk, and the few that are not yet fully understood deserve a few further years of research. Thus my talk will only give the flavour of a few of the boxes that I understand, and only hint at my expectations for the contents the (2,4) box, the one I understand the least and the one I wish to understand the most.

Pasted from <<u>http://www.math.toronto.edu/~drorbn/Talks/PSU-090205/</u>>

For handart. * Use obd Fech TILL it C 1 5 mins 1. u ラ W bold lines, not straight. З. 2. Ч. topology 5 mins 5 mins 5 mins Prop estimates: kigh algebra, bu algubra combinations 5.1 5.2 Abstract/tille 1hr 10 mins 1 mm 1 min Outline Jone line. lhr 10" 7.1 7. 6. 4 min 5 min 1 min Hendort 4 hos prinding otc. 2 hrs. knots are the wrong object 10. 9 wrong to st +0 dy 2 min 1 min q min ∮ 7.5" \leftarrow ->

2009-02 Page 2

(u,	v, and w knots) x (topolog	y, combi	inatoric	s, low a	algel	bra, and high	algebra)	"Go	d created the knots, all else in	
D	Dro	Bar-Natan, Penn State February 5 2	009, http://v	www.math	i.toronto.e	du/~d	rorbn/Talks/PSU-	-090205/	L	eopold Kronecker (modified)	
H		Manuel Charmes u-knots	<u>ി</u> മേള്ക്ക്ക്	1	v-	-kno	ots o	onto		w-knots BF Theor	
		~ > 	v-knot	ts are vir	tual k	(R123)	w is for w	elded	l, weakly v, and warm	up:	
		SIX day bins Other, hep-two and streets al-dester Odd	Contract Speed Cander	<i>⊱∕</i>	$ \land i$	}/	$\chi = ($ VRI	4 {w-	cnots	}={v-knots}/(OC)	
		u-knots are usual knots:	2	ιcx	\mathcal{F}]/x	~=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	where OC	15 0	vercrossings Commu	te:
	2	$\left(\bigcap_{i} \right) \mathcal{P} = \right)$	R1		\sim	1	/ R123 \	×≞	X	y yet ∕ × ≠ ∖	<u>(</u> 1
4	õ	$\int \int $	B 2	=PA (X	\mathcal{X}	VR123	' ` oc	<u></u>	UC	<u>`</u>
	d o		/		$\overline{\langle }$	Ĺ		<u>•</u> O	-)	Related to "mo of flying rings"	vies
			X~ R3	=CA (X	R1	23) 🔝		$\langle \cdot \rangle$	to knotted tube	s d to
			0	= Knots o	on surfaces,	modu	lo stabilazation:	Ō	Ζ	"basis conjugat automorphisms	ting s of
		=PA R123	U					00		free groups".	
		"Knots in ℝ ³	317			6		McCool Goldan	Fern rith	Rimanyi Satoh Beendle Hatcher	,
		Extend any $V : \{u\text{-knots}\} \rightarrow A$ ar u-knots" using $V(X) := V(X)$	to "singu- $() - V(\times)$.	The Miller Issi	, 5		the same, except $(\aleph) := V(\aleph) -$	$V(\times) = 6$	۲	All the same, except	7
		and think "differentiation".	m+1) o	R	Xo	V	(X) := V(X) -	$V(\times)$	Polyak	$\mathcal{A}^- := \mathcal{A}^- / I C$	Ċ.
ę	s	Declare "V is of type m " iff V think "polynomial of degree m "	$(m+1) \equiv 0,$		200	A' Need	$z := \{ arrow d$ a Z : $\{v-knot\}$	$agrams^{n} / 0$ $s \rightarrow A^{v}$.	Ľ	$\{w-knots\} \rightarrow A^w$.	
ļ		$W = V^{(m)}$ roughly determines	$V; W \in$	$(\geq$	$(2)^2$	The	6T Relation (and a	hidden 4T):		"Tails Commute (TC)":	
i		A _m with		1	\sim	1		<u></u> +1_1+	-1	× 1	
1		$A_m := \left\{ \begin{array}{c} & \\ & \\ & \end{array} \right\} \left \begin{array}{c} & \\ & \\ & \end{array} \right $	¶	\bigwedge	3		┼╸┤╵┝╼┥				
1	2		1	\wedge			* * * *		٨	=	
		Need a "universal" Z : {u-knot	$s\} \rightarrow A =$	K	Y		+	+	-		
		Vasdikv	$\bigoplus A_m$, V.	L.						
		10	9	Theorem. \mathcal{A}^{w}				$v \cong A^{wt} :=$	<u>،</u> ر	XENINI	8
1	2	Similar	Similar Lie bi-algebras arbitrary Lie algebras					$ = \sqrt{-\frac{1}{2}} \sqrt{-\frac{1}{2}} $ arc			
don	20	with metrized Lie algebras replacing arbitrary Lie algebras					111,				
10.11	R N		replacing	Monuary		4.0	This screams, i	f vou speak tl	ie lar	iguage, LIE ALGEBR	₹AS
3	à	Perrosa Cvitarovic Vogel	And indeed we h				have				
		_				1	is $T : \mathcal{A}^w \to \mathcal{U}$	$(I\mathfrak{g}) := \mathcal{U}(\mathfrak{g} \ltimes$	g [*] _{ab})		nere
	+	Knots are the wrong objects to	study in	knot			13	Switch to y	/-kno	tted trivalent tangles	.12
		theory! They are not finitely	generated	and	Zisa		antum Group?	wK	TT:	$= CA \langle X, X, Y \rangle.$	
		they carry no interesting opera		2	Marrie		ninalas a ha	Theorem (~ alent to p	•). A rovin	homomorphic Z is eq g the Kashiwara-Ve	luiv-
			65	ろ	momo	prec	cisely, a no- c Z ought to	statement.		8	- 0
ļ	2013	Knotted Trivalent Granha			be equivalent to the Etingof-Kazhdan theory				Statement (~, KV, 1978) (proven Alekseev-Meinrenken, 2006). Convolu-		
ople	ŝ				of deformation quantiza-			tions of invariant functions on a group			
4	5				tion of Lie bialgebras.				match with convolutions of invariant functions on its Lie algebra: for any finite		
2	=		0.6	70		lingul	Karbdan	dim. Lie gr	oup	G with Lie algebra \mathfrak{g} ,	,
		$A \rightarrow A \rightarrow A$	_)	∠ ¥	Dror's E	Dream:	: Straighten and	(Fun(G	Ad G	$(\star) \cong (Fun(\mathfrak{g})^{\operatorname{Ad} G}, \star)$	
				fatten this column.			Closely rel representat	ated ion ti	to the "orbit method heory).	r" of	
		the same as a "Drinfel'd Assoc	Drinfel'd	An Idle Question. Is there physics in this column?					Tarossian	S.	
14											
4	3										
				11	E/A		-	10			
				2							
		Рептозе	e (lvita	inov	ric.	Vo	gel			
	-			4					-		
٦٤		Picture so to	. די	An	170	(w	ight for	ever	1	(9,1K)	
								· ·	/ '		

> A To U(y) Tran C of u- knots} 2 high dgebra bu algebra Dror Bar-Natan: Talks: PSU-090205: 3x4 http://www.math.toronto.edu/~drorbn/Talks/PSU-090205/3x4.html Screen clipping taken: 04/02/2009, 9:55 AM Make Jasked