A Kishino Braid
December-05-08 1:38 PM

Image from Title: Virtual knots undetected by 1 and 2 -strand bracket polynomials Authors: H. A. Dye


2008-12 Page 1

Oops, with $B=\approx x$ - we sum to have $B^{2}=I$, yet $B \neq I$.
$\operatorname{excot}+B$ hts a

$$
\begin{aligned}
& I^{2} \ni(B-I)(B-I)=B^{2}-2 B+I=2 I-2 \text { k } \begin{array}{l}
\text { nontrivial } \\
\text { shat hon. }
\end{array} \\
& \forall B-I=0 \text { in projv }
\end{aligned}
$$

$\Rightarrow B-I=0$ in projv $B$

$$
\sqrt{3 c} \quad \bar{x}
$$

OK, Questions:

1. Prove that
$[=x \sqrt{x}, \exists \sqrt{\square}]$ is nontrivial in $v B$.
will it work using the Jones polynomial?
2, prove that

$$
[[|H|, H+H],[|t|, H+1]]
$$

is non-trivial in $A_{3}^{v}$
3. Aside Is the kauffman bracket of a virtual knot of finite type? What is its wight system? "of" means "dominated by".

- It is not obviously of finite tyre:

$$
\not \subset \rightarrow X-X \rightarrow \pm q)( \pm \bigcup \pm X
$$

ane there are no cancellations at $q=1$.
Likewise, what's the relationship between the Jones polynomial and the kauffman bracket for $v$-knots?


Just for comparison, a trivial braid:


