KAL of August 6 Summary and expansion

August-06-08

a:= arrow #1

Ji := direction of a; hue: (++-+)

 $S_i = Sign of \alpha_i$ here: (+--+)

Let C=(I+T) \$

with the large $dB = \frac{1}{2}(K-1)T(I+S) + (X^{-1}-1)T(I-S)$ of log det $M(-\frac{t^{2}}{2})$ is $Z = TV(I-B)^{-1}BC = TV[I-B^{-1}C-C]$ $= -ttV[M^{-1}M]-\frac{t^{2}}{2}$

Conjucture $Z(X) = -X \frac{A'(X)}{A(X)}$, with A(X) being the Alexander polynomial.

T - the trapping matrix:

Tis = { l ai unds within to open span of a; } ,5 = dizg(Sidi)

I by dd(m) = = t (M - 1 d M)_

 $\beta = \frac{1}{2} T((x-1)(I+s) + (x^{-1}-1)(I-s) =$ $=\frac{1}{2}\left[\left(X+X^{-1}-2\right)I+\left(X-X^{-1}\right)S\right]$ $= \frac{1}{2} \left(\left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right)^{\frac{1}{2}} + \left(x - x^{-1} \right) S \right) =$ $= \left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right) \frac{1}{2} \left(\left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right)^{\frac{1}{2}} + \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) S \right)$ $= (t-t^{-1}) \pm (t-t^{-1}) I + (t+t^{-1}) S$

Guess The M That works is I-B 01 a close relative. Set X2 = +

Alternatively

C = (I+T)S, $B = T(\tilde{C}^{SCS} - 1)$

 $\frac{2}{2}(I-B) = Te^{-xS} = BS + TS = BS + C - S = C - (I-B)S$

 $\frac{\partial}{\partial x} \log(\det(\mathbf{I} - \mathbf{B})) = \operatorname{tr}((\mathbf{I} - \mathbf{B})^{-1} \frac{\partial}{\partial x}(\mathbf{I} - \mathbf{B}))$ = tr((I-B) ((-(E-B)S)) $= tr((I-B)^{-1}(-S)$

- L-(F-01-1-

or fr (-fr

$$= tr((I-B)^{-1}C-C) \quad \text{as } trS=trC$$

$$= tr((I-B)^{-1}(C-(I-B)C)$$

$$= tr((I-B)^{-1}BC) \quad \bigcirc E \cap (PATI)$$

It remains to explain why det(I-B) is the Alexander polynomial 0